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Abstract-The rise of a buoyant plume into atmospheric inversions is investigated analytically for a range of 
inversion rates. The analysis assumes gaussian distribution of velocity and temperature. The results show 
that maximum plume rise decreases with inversion intensity, and the ratio of maximum rise to the height at 

which zero buoyancy occurs is a function of the densimetric froude number and the inversion intensity. 

NOMENCLATURE 

a, 5.729 plume profile parameter; 
b(z), plume radius; 
c, atmospheric inversion parameter [K]; 
Fr, u/gb(O)B initial densimetric Froude number; 
Fl;g, local densimetric Froude number; 

9, gravitational constant; 
I ij? similarity variable, i = I, 2,3,j = 1,2; 
P(z), atmospheric pressure; 

91, radial heat transfer; 

> 
radial coordinate of plume; 

RB’ 
gas constant; 
b(z)/b(O) dimensional radius; 

S, atmospheric inversion parameter; 

T, temperature; 
u(r, z), plume axial velocity; 

UOT u(r = 0, z); 

Ul, 40,O); 

U, ~(0, z)/u, dimensionless plume velocity; 
V(r, z), plume radial velocity; 

v,> ufb, z) ; 
Ve, u(b, z)/ui dimensionless entrai~ent velocity; 
Z axial distance along plume; 
zi, dimensionless density variable, i = 1,2,3. 

Greek symbols 

cr, entraiment parameter; 

ajt components of entr~nment parameter j 
= 1,2,3; 

B> p, -pip density difference; 

P9 density; 

Pl? air reference density; 

TT,Z? turbulent shear stress distribution; 
c 

;, 

Z/b(O) dimensionless distance; 

P= - P(%z) or (P, - ~(4 z)P ; 
% r/b(z) dimensionless radial variable. 

Subscripts 

1, ground level; 
e, ambient condition; 

P? plume. 

1. INTRODUCTION 

INTEREST in the maximum plume rise, and buoyant 
plume entrainment has increased recently as the 

atmosphere is being considered as the ultimate heat 
sink for process, thermal and nuclear power plants. 
The heights to which plumes rise determine the extent 
and range of effluent dilution. In the case of liquid 
laden plumes, the dispersion of plumes determines the 
extent of misting and reprecipitation of moisture to 
ground level. The rise of gaseous plumes from dry 
cooling tower stacks have been studied as a model for 
understanding the rise and spread of moisture laden 

plumes of wet cooling towers. On account of the 
tendency for recondensation and misting in a wet 
plume, any reduction in its overall rise is undesirable 
from an environmental point of view. Since entrain- 
ment influences the thermal energy of the plume, it will 
be instructive to investigate the entrainment character- 
istic of a dry plume, and to observe the effect of 
inversion intensity on the overall plume rise. 

Morton, Taylor and Turner [l] proposed that the 
entrainment velocity of a plume is proportional to the 
axial core velocity U(Y = 0, z), with the proportionality 
variable being constant. Briggs [2], following an 
extensive literature survey, proposed that the entrain- 
ment velocity is proportional to the square root of the 
axial momentum flux uZb2, and the proportionality 
variable, LX, is constant. In the analytical study by Fox 
[S], it was shown that the parameter CI is related as CI 
= GIN +u,/Fri in which CC~ and 01~ are constants, and 
Fr+ is the local densimetric Froude number. Although 
Fox’s model is in agreement with [i], his expression 
for the densimetric Froude number leads to imaginary 
numbers in the regions of negative buoyancy. The 
analysis by Fox established the occurrence of outflow 
from the plume; extending his result into the negative 
buoyancy region is questionable since Frj is negative 
there. The differences in the existing models may be 
identified with the closure of the governing equations. 
In [l], no closure was necessary, the relationship 
between entrainment velocity and U(Y = 0,~) was 
assumed explicitly. In [3], the turbulent shear stress 
was prescribed inde~ndently, thus yielding a free 
parameter that was determined empirically. 

The objective of this study is to investigate the rise of 
a dry buoyant plume subject to the conservation of its 
mechanical energy. The closure based on the con- 
servation of mechanical energy makes the system of 
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governing equations internally consistent. As in pre- model is thus well posed, and a solution will now be 
vious studies, it is assumed that the flow is axisym- obtained. 
metric, turbulent and steady in the mean [4,5]. The It is reasonable to assume that the velocity and 
plume is nominally compressible, and perfect aas density profiles within the plume are similar. This _ _ 
relations are assumed. 

2. ANALYSIS 

The governing equations are 

Continuity 

$ WV,) + -$ (Pa) = 0 

Momentum 

g (PI+) + 2 (Pa? 

= (P, - P)P + i (%) 

Energy 

& @rV,c, T) + ; (pruc, T) = i (W) 

Closure 

$ (prW + i (pru3) 

=2u(p.-p)gr+2u~(r7,,) 

Equation of State 

P(r, z) = p(r, z)R, T(r, z) 

assumption which is valid for the incompressible flow 
[4] is expected to hold for a buoyant plume since the 
maximum temperature defect, occurring at the source, 
is normally small. 

Experimental studies on buoyant plumes confirm 
the validity of assuming similarity profiles. As with 
Fox [3] and others [6] it will be assumed that the 
velocity and density profiles can be written in the form 

(1) u(r,z) = u. em”+ (9) 

p,-p(r = 0,~) = 4(z) e-atr”!i.’ (10) 

where 4 is the axial density difference, and 3, is a 
dispersion parameter. Experiments [7] have shown 
that the temperature or density profiles are not 

(2) generally confined within the limits of the plume. In the 
study by Fox [3], it was found that experimental data 
could be correlated with 0.8 < E. < 1.2. It will be 
assumed in this study that 1 = 1. 

(3) 
On integrating equations (l)-(4) with respect to r 

from r = 0 to r = b(z), the following equations are 
obtained. 

: [b’uow,, -Id)1 = p,bl/, (11) 

where V, and u are the radial and axial velocity 
components in the plume, p. is ambient air density, p is 
the plume density, t,, the effective shear stress, q, the 
turbulent heat transfer in the radial direction, r and z 
are the radial and axial coordinates of the plume. 
Equation (4) is the closure equation obtained by 
multiplying equation (2) with u(r,z) and using the 
continuity equation to simplify the analysis. 

The condition of atmospheric inversion is assumed 
to be in the form 

T,(z) = IT;+cz (6) 

in which ?; is the ambient air temperature at the plume 
source, and C is the atmospheric inversion rate, with c 
> 0. From equations (5) and (6) the atmospheric 
pressure and density variation may be obtained as 

-e/c& 

-~/CR, - 1 

. (8) 

There are thus seven unknown variable p, V,, u, T, P, 
T,,, and q, in the governing equations. Equations 
(l)-(8) supply the seven independent equations ne- 
cessary for determining the dependent variables. The 

(13) 

$ [b24d3, -r324)l 

=A,bzu,~gl,2 + A2~&‘u; 

+w9 (14) 

where V, is the entrainment velocity, and the similarity 
variables Ijk,j = 1, 2, 3, k = 1, 2 are given by 

1 

Ill = 
s 

v e-q2 dq 
0 

s 1 

II2 = I,, = qem2”“* dr) 
0 (15) 

s 1 

I,, = I,, = q ee3w2 dq 
0 

and 

A, = (e-“-e-2”)/a+(0.1667-0.5e~” 

+0.5ee2” -0.1667 e-3”)I,,/121 

A, = 0.1667-0.5e-2”+0.333e-3”. 
(16) 
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The dimensionless form of equations (11)-(14) is 

; (R2UZ,) = p,RI$ (17) 

$ (R'U'Z,) = 2 R2c$ 

$ (PeR2U) = PeR21/,II,, 

-& (R2U3Z,) = A,c#JR~U/F~ 

(19) 

(20) 

where the initial Froude number, Fr, and the density 
variables zj, j = 1,3 are defined by 

Fr = uJ(gb(O)/3)“’ 

Zj = p,Ijl - t#J/?Ijz, j = 1,2,3. 

The entrainment velocity is eliminated 
continuity and energy equations to obtain 

$ (R’U4) = I,,SR2Ul(Z12/7). 

(21) 

(22) 

from the 

(23) 

The system of governing equations thus reduces to 
three simultaneous nonlinear differential equations 
(18), (20) and (23), and are subject to the initial 
conditions specified at the plume source 

at r = 5,, (R2U2Z2)o = Z,I, 

(R2U3Zo)o = Z,I, (24) 

(R2U4),, = 1. 

Under Boussinesq approximations, the Zj, j = 1,3 
on the LHS of equations (17)-(20) are generally 
[l, 3,6] replaced with plZji. While this step simplifies 
the analysis, it leads to the loss of valuable information. 
Equation (18) can be easily reduced to the form 

ZllI22 
+- 

Cl 

SR2U (25) 

which shows the effect of buoyancy and atmospheric 
inversion on the apparent momentum flow. Under 
Boussinesq approximation pe is commonly replaced 
with pl, and the last two terms in equation (25) are 
dropped. In zero buoyancy flow, in a stably stratified 
atmosphere, equation (25) preserves the influence of 
stratification. In addition, it may be noted that the first 
and second terms on the RHS of equation (25) 
counteract each other throughout the plume motion. 
Initially 0 < 4 < 1, and du/d< is negative everywhere; 
in the negative buoyancy zone, 4 c 0, the signs of these 
terms are reversed. For the reasons stated above, the 
Boussinesq approximation will not be used in this 
study. 

The components of the entrainment parameter CY~, j 
= 1,2,3 show that a is a function of the buoyancy 
parameter 4, the ambient fluid density pe, and the 
stratification parameter, S. In the initial phase of the 
plume motion, 0 < 4 c 1, the influence of the flow 
parameters Fr, /3 and S may be investigated for this 
phase of the plume motion. For large Froude numbers, 
Fr, or a small density difference /I 1: 0, equation (26) 
can be approximated as 

1 dU 
a=ar=---. 

U d< 
(2% 

These limits correspond to the incompressible flow 
situation, and Hinze’s [4] similarity solution can be 
used to show that 

1 

a’ =T+To 
<>O 

The incompressible limit of the governing equations where co is the virtual origin. From available analyti- 

is obtained when 4 is set equal to zero, or when the 
densimetric Froude number becomes large. One infers 
from these limiting extremes that the plume motion is 
momentum dominated. The above reasoning allows 
the variable l/U dU/d{ to be estimated from existing 
solutions of the incompressible flow. 

Further insight into the variation of the entrainment 
velocity, V,, is gained by expanding equation (17) and 
using equation (23) to simplify the result. 

where 

and 

V, = I,,(al +a2/Fri+a3)RU (26) 

al=ff~-l)~~ 

a2 = FSgn(4) 
21 

122 I Ill 
a3=_ __-_!A 

( > 1 
-/Q 

21 Ill II2 

Fr+ = Fr(p, U2/141)‘/2. 

Thus the entrainment velocity varies as the square 
root of the local momentum flow R2U2. This is the 
conclusion reached by Briggs from an extensive litera- 
ture review. The entrainment parameter may now be 
written as 

a = a1 + a,/Fri + a3. (27) 

The corresponding expression obtained by Fox can be 
written as 

a = 0.0535 +0.25/Fr& (28) 

Comparison of equations (27) and (28) suggests a, or 
(al +a,) is a constant. Equations (26) show that a, 
varies as l/U dU/d{ while a3 varies as the stratification 
parameter. 

3. CONSTRAINTS ON THE 
ENTRAINMENT PARAMETER 
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cal and experimental studies, 12 < to ,< 16. Thus at 5 
= 0, c~i = 0.0714 assuming to = 14. 

The influence of the stratification parameter, 8, 
becomes significant when 4 < 0, as c(i and a2 no longer 
augment each other. Under Boussinesq approxi- 
mation, tlg is zero as is the density dependent term in 
the c~i expression. Equations (25) and (26) are the most 
general expression for the entrainment parameter. It 
may be noted in the foregoing that the entrainment 
velocity V,, and c[ become negative only in the negative 
buoyancy zone. A negative V’ implies outflow from the 
plume, hence the horizontal spreading out of the 
plume structure observed in practice. 

4. MAXIMUM PLUME RISE ANALYSIS 

The assumption of similar profile cannot be expec- 
ted to hold in the region of plume spread. The plume 
has residual upward motion even after V, < 0. At the 
onset of outflow, the plume radial velocity is zero 
everywhere. In the region near the plume axis, equa- 
tion (2) becomes 

J!(uqo,z)) 2 2sg (30) 
“L 

and in dimensionless form 

Equation (31) is used in calculating the maximum 

height L, at which the plume attains zero upward 
mobility. The switch from equations (18) (20) and (23) 
to equation (31) occurs at V, = 0. 

5. RESULTS AND CONCLUSIONS 

In this study, the numerical calculations were car- 
ried out for values of the inversion parameters C = 1.0, 
0.8, 0.6 and 0.4 degrees rise per unit of axial distance. 
The height at which the plume begins to spread V, = 0, 
is shown in Fig. 1. The ratio 2,/Z, in Fig. 2 shows the 
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FIG. 1. Influence of inversion intensity on height of plume 

Inhl froude number, Fr 

2. Dependence of ultimate plume rise on inversion 
intensity.. 

Fr=lO 

Distance from source 

3. General characteristics of plume buoyancy and en- 
trainment velocity. 

Fr.10 

O.l- 

Sneck and Brown 

0 2 4 6 6 

Z Axial distance 

FIG. 4. Characteristics of entrainment and local Froude 
number. spreaa. 
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ultimate plume rise compared to the height at which 
neutral buoyancy occurs. Figure 3 shows the variation 
of plume buoyancy and entrainment velocity with 
plume rise, while the components of plume entrain- 
ment parameter are shown in Fig. 4. 

The plume rise results obtained in this study are in 
good agreement with those of Brown and Sneck [6] 
and Fox [3]. Figure 4 shows that the total entrainment 
parameter variation obtained in this study differs from 
the result of Brown and Sneck, shown in Fig. 4. It can 
be seen that both models predict the same total 
entrainment of ambient atmospheric fluid. Given the 
normally assumed small difference between the plume 
and ambient temperatures, the effect of local variation 
of entrainment is justifiably small. 
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ASCENSION DUN PANACHE THERMIQUE DANS UNE INVERSION ATMOSPHERIQUE 

R&sum&-On itudie par voie analytique l’elivation d’un panache thermique dans une inversion 
atmospherique pour plusieurs taux d’inversion. L’analyse suppose une distribution gaussienne de vitesse 
et de temperature. Les rtsultats montrent que le niveau maximal atteint par le panache decroit avec 
l’intensite de I’inversion, et que le rapport du niveau maximal a la hauteur pour laquelle les forces 

d’ArchimMe s’annulent est une fonction du nombre de Froude et de I’intensite de I’inversion. 

DAS AUFSTEIGEN VON AUFTRIEBSSTRGMUNGEN IN ATMOSPHARISCHE 
INVERSIONSSCHICHTEN 

Zusammenfassung-Das Aufsteigen einer Auftriebsstromung in atmosphlrische Inversionsschichten wird 
fur verschiedene Inversionsraten analytisch untersucht. Die Studie geht von einer Gauss’schen Verteilung 
von Geschwindigkeit und Temperatur aus. Die Ergebnisse zeigen, daB die maximale Aufstiegshohe mit 
der Inversionsintensitat abnimmt, und daI3 das Verhlhnls der maximalen Aufstiegshdhe zur HBhe, bei der 
der Auftrieb Null wird, eine Funktion der mit den Dichteunterschieden gebildeten Froude-Zahl und der 

Inversionsintensitat ist. 

BO3HMKHOBEHME BCIIJIbIBAIOILIMX CTPYH 
HPM ATMOCQEPHblX HHBEPCMIIX 

AHHoraum- Mccnenyercn atiankiTwiecKti B03wiKHoBemie BcnnblBamueR cTpys npti ~~aepcww B 
aTMoc@epe nnrt pa3nmHbIx Kos~&wieHToB misepcsrl. npH aHami3e aenaerca aonyuewie 0 rayc- 
COBOM pacnpeneneHan CKOpOCTeti W TeMIIepaTyp. Pe3ynbTaTbl IlOKa3blBalOT, 'IT0 MaKCWManbHblfi 
ITOJISeM BCllnbIBalolIIeti CTpyR yMeHblUaeTCR C yMeHbllIeHHeM HHTeHCBBHOCTA HHBeJXEiH, a OTHO- 
IIleHUe MaKCHManbHOrO IlOnbeMa K BbICOTe, npl4 KOTOpOk OTCyTCTByeT IlOnXeMHaX CUna, 3BBWCWT 

OTLIeHCHMeTpWieCKOrO WiCJla @pyna A BenAYAHbI EcHBepCHH. 


